Notice of the Final Oral Examination for the Degree of Doctor of Philosophy of #### JASON CRAWFORD MSc (University of Victoria, 2010) BSc Honours (University of British Columbia, 2007) # "New Technologies for ²¹¹ At Targeted Alpha-Therapy Research Using ²¹¹ Rn and ²⁰⁹ At" Department of Physics and Astronomy Thursday, June 16, 2016 9:30 A.M. David Turpin Building Room A144 ### Supervisory Committee: Dr. Andrew Jirasek, Department of Physics and Astronomy, University of Victoria (Co-Supervisor) Dr. Wayne Beckham, Department of Physics and Astronomy, University of Victoria (Co-Supervisor) Dr. Thomas Ruth, Department of Physics and Astronomy, UVic (Member) Dr. Dean Karlen, Department of Physics and Astronomy, UVic (Member) Dr. Julian Lum, Department of Biochemistry and Microbiology, UVic (Outside Member) #### External Examiner: Dr. Stephen Larson, Nuclear Medicine, Memorial Sloan Kettering Cancer Center #### Chair of Oral Examination: Dr. Wanda Boyer, Department of Education Psychology & Leadership Studies, UVic Dr. David Capson, Dean, Faculty of Graduate Studies ## **Abstract** The most promising applications for targeted α -therapy with astatine-211 (211 At) include treatments of disseminated microscopic disease, the major medical problem for cancer treatment. The primary advantages of targeted α -therapy with 211 At are that the α -particle radiation is densely ionizing, translating to high relative biological effectiveness (RBE), and short-range, minimizing damage to surrounding healthy tissues. In addition, theranostic imaging with 123 I surrogates has shown promise for developing new therapies with 211 At and translating them to the clinic. Currently, Canada does not have a way of producing 211 At by conventional methods because it lacks α -particle accelerators with appropriate beam characteristics. The work presented here was aimed at studying the 211 Rn/ 211 At generator system as an alternative production strategy by leveraging TRIUMFS ability to produce rare isotopes. Recognizing that TRIUMF provided production opportunities for a variety of astatine isotopes, this work also originally hypothesized and evaluated the use of 209 At as a novel isotope for preclinical Single Photon Emission Computed Tomography (SPECT) with applications to 211 At therapy research. At TRIUMF's Isotope Separator and Accelerator (ISAC) facility, mass separated ion beams of short-lived francium isotopes were implanted into NaCl targets where ²¹¹Rn or ²⁰⁹At were produced by radioactive decay, *in situ*. This effort required methodological developments for safely relocating the implanted activity to the radiochemistry laboratory for recovery in solution. For multiple production runs, ²¹¹Rn was quantitatively transferred from solid NaCl to solution (dodecane) from which ²¹¹At was efficiently extracted and evaluated for clinical applicability. This validated the use of dodecane for capturing ²¹¹Rn as an elegant approach to storing and shipping ²¹¹Rn/²¹¹At in the future. ²⁰⁷Po contamination (also produced by ²¹¹Rn decay) that is intrinsic to this generator system war (also produced by ²¹¹Rn decay) was evaluated. ²⁰⁷Po impurities were shown to compromise antibody labelling procedures, demonstrating the necessity of purifying ²¹¹At (from ²⁰⁷Po) before proceeding with biomolecule labelling, which was accomplished using a tellurium column. Although the produced quantities were small, the pure ²¹¹At samples demonstrated these efforts to have a clear path of translation to animal studies. For the first time in history, SPECT/CT was evaluated for measuring ²⁰⁹At activity distributions using high energy collimation, in mice and phantoms. The spectrum detected for ²⁰⁹At by the SPECT camera presented several photopeaks (energy windows) for reconstruction. The 77-90 Po X-ray photopeak reconstructions were found to provide the best images overall, in terms of resolution/contrast and uniformity. Collectively, these experiments helped establish guidelines for determining the optimal injected activity, depending on scan parameters. Moreover, ²⁰⁹At-based SPECT demonstrated potential for pursuing image-based dosimetry in mouse tumour models, in the future. Simultaneous SPECT imaging with ²⁰⁹At and ¹²³I was demonstrated to be feasible, supporting the future evaluation of ²⁰⁹At for studying/validating ¹²³I surrogates for clinical image-based ²¹¹At dosimetry. This work also pursued a novel strategy for labelling cancer targeting peptides with 211At, using octreotate (TATE, a somatostatin analogue for targeting tumour cells, mostly neuroendocrine tumours) prepared with or without N-terminus PEGylation (PEG₂), followed by conjugation with a closodecaborate linking moiety (B10) for attaching ²¹¹At. Binding affinity and *in vivo* biodistributions for the modified peptides were determined using iodine surrogates. The results indicated that B10-PEG2-TATE retained target binding affinity but that the labelling reaction with iodine degraded this binding affinity significantly, and although having high in vivo stability, no 1231-B10- PEG2-TATE tumour uptake was observed by SPECT in a mouse tumour model positive for the somatostatin receptor (sstr2a). This suggested that further improvements are required for the labelling reaction. A new method for producing 211 At at TRIUMF is established, and 209 At -based SPECT imaging is now demonstrated as a new preclinical technology to measure a tatine biodistributions in vivo for developing new radiopharmaceuticals with 211 At. Combined with the theranostic peptide labelling efforts with iodine, these efforts provide a foundation for future endeavours with 211 At -based α -therapy at TRIUMF. All procedures were performed safely and rapidly, suitable for preclinical evaluations.